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Abstract. Recently established new thermodynamic relations among experimentally available
data are used to evaluate the contribution of the structural change in the liquid S–Te system to
the Darken stability. The analysis of the Darken stability shows that the unusual looped two-melt
phase separation that takes place in a small composition interval well above the liquidus line is a
consequence of the change in the local order of the liquid. Delicate balance between the entropy
term and the contribution from the structural change realizes this unique two-melt phase separation.
This local order change that is expected in a small composition range has actually been observed
by neutron diffraction measurements.

1. Introduction

Liquid chalcogenide elements (S, Se and Te) and their mixtures show variety of physico-
chemical properties (Gerlach and Gross 1979). Liquid S melts atTm = 117◦C and undergoes
a polymerization transition at 159◦C in which a change from ring to long chain molecules
takes place. By adding Se, the onset temperature of the polymerization transition shifts to the
lower temperatures at the rate of−5.5 K at.%−1 (Tsuchiyaet al 1999). Se (Tm = 220◦C)
keeps its chain structure (divalency) up to above 1000◦C and transforms to a denser structure
around 1500◦C under moderate pressure (Fisheret al 1980). Te melts into a liquid with a
coordination number slightly larger than 2 that keeps increasing with increasing temperature.
In the supercooled state, the coordination number approachesz = 2 (Menelleet al 1989).
The gradual transition from a state with two neighbours to a state with a larger number of
first neighbours (referred to as ‘structural change’ in the following) is accompanied by a broad
extremum around 356◦C in the three thermodynamic response functions (the constant pressure
specific heat, thermal expansion coefficient and isothermal compressibility) as a function of
temperature (Tsuchiya 1991a) and is the origin of the nonmetal–metal transition (Bicharaet al
1996). It has been shown that the addition of S or Se stabilizes the low temperature form
(divalency) of Te (Thurn and Ruska 1976). Consequently the transition region around the
extrema in the thermodynamic response function shifts to the higher temperatures (Tsuchiya
1991b, 1994).

Although the overall dependence on composition and temperature of physico-chemical
properties is much the same, the stability of mixture is quite different in S–Te and Se–Te
systems. The phase diagram of the S–Te system is shown in figure 1 (Tsuchiya 1992).
The liquid S–Te system has an unusual two-melt region bound by a closed loop in the
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Figure 1. Looped two-melt phase (Tsuchiya 1992) in the phase diagram of the S–Te system (Hansen
and Anderko 1958). The hatched line shows theT ∗–x curve or the location of a ridge connecting
extrema in the thermodynamic response functions (Tsuchiya 1994). Open circles indicatex–T
points at which the Darken stability evaluated using equation (17) becomes negative due to structural
changes, see the text. The distorted pentagon is a guide for the eye.

composition–temperature (x–T ) plane. In other words, a S–Te alloy in a small composition
range around 60 at.% Te melts to a homogeneous liquid, then separates into two melts at
temperatures some 300◦C above the equilibrium liquidus temperature. It again becomes
homogeneous at still higher temperatures. The two-melt region is located in an extremely
narrow range centred at about 60.8 at.% Te and 715◦C, which is on the ridge connecting extrema
in the thermodynamic response functions in thex–T plane. For the Se–Te system, no apparent
experiments indicating the macroscopic instability of mixture have been reported. Only high
resolution neutron diffraction experiments on Se25Te75 at two temperatures suggested that
segregation tendency on an atomic scale developed at the higher temperature (Misawa and
Suzuki 1982).

To explain the thermodynamic properties of the liquid Se–Te system, Tsuchiya and
Seymour (1982) developed an inhomogeneous structural model. By assuming the thermal
equilibrium of two forms of microscopic domains of a Se–Te alloy, all the available
thermodynamic data could be explained consistently (Tsuchiya 1986a). Amzilet al (1996)
recast the same ideas in the framework of a modified regular solution model. In the meantime,
it has been shown with the inhomogeneous structure model that the structural change in the
melt could be the driving force for the segregation tendency in the S–Te and Se–Te systems
(Tsuchiya 1992, Tsuchiyaet al 1996). With a set of plausible parameters, the model could
reproduce the looped two-melt phase in the S–Te system (Tsuchiya 1992).
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Quite recently one of the present authors (YT) has derived new thermodynamic relations
(Tsuchiya 1999) that enable us to connect the three thermodynamic response functions to the
Darken stability (Darken 1967). The relations have proved that the excess part of the Darken
stability (δD) caused by structural changes is definitely negative, and thus the structural change
in a binary mixture stimulates tendency towards phase separation. They also show that the
quantityδD can be evaluated from experimental data. The aim of this paper is to present
an application of these new thermodynamic relations to the S–Te system: the contribution of
the structural change to the Darken stability can be evaluated from the data of molar volume,
isothermal compressibility and specific heat as a function of temperature and composition.
We then show that this unusual phase separation can be explained by using the available
thermodynamic data and that it results from the structural change in the melt. Discussion is
made in relation to recent neutron diffraction experiments performed independently by two
groups, one at Tsukuba (Kakinumaet al 1999) and the other at Saclay (Couletet al 1999).

2. Thermodynamic relations

A detailed derivation of the new thermodynamic relations has been reported elsewhere
(Tsuchiya 1999). We briefly present it here. Assuming that structural change in a S–Te mixture
can be described by a single parameterC(T , P, x), whereT is temperature,P pressure and
x the fraction of Te, the Gibbs free energy (G) can be written as (Davies and Jones 1953,
Tsuchiya 1991a)

G = G(T , P, x, C(T , P, x)). (1)

We suppose thatC changes continuously fromC = 0 at low temperatures toC = 1 at high
temperatures. Thermal equilibrium requires

(∂G/∂C)T,P,x = 0. (2)

This condition specifiesC as a function ofT ,P andx. The total differential (dG) of the Gibbs
free energy is given by

dG = (∂G/∂T )P,x,C dT + (∂G/∂P )T,x,C dP + (∂G/∂x)T,P,C dx

= −S dT + V dP +1µ dx (3)

whereS, V and1µ denote the entropy, volume and difference in the chemical potentials for
S and Te, respectively.

Further assuming thatG is differentiable up to the second order with respect to any of
the state variables andC, we have six terms for the second derivative ofG. Three diagonal
terms like∂2G/∂T 2, ∂2G/∂P 2 and∂2G/∂x2 give the constant specific heat,CP , isothermal
compressibility,κT , and Darken stability,D, respectively. The other three cross terms like
∂2G/∂T ∂P , ∂2G/∂P∂x and ∂2G/∂x∂T give the thermal expansion coefficient,αP , the
difference in the partial volume,1V , and the difference in partial entropy,1S, for S and
Te, respectively.

Any of thermodynamic response functions takes a form likeφ0+δφ if the structure changes
steeply by changing temperature, pressure and/or composition.φ0 represents a thermodynamic
response function expected if there were no structural changes andδφ the contribution caused
by the change in the order parameterC with respect toT , P or x. We consider the specific
heat,CP , as an example. Starting from the identity

T −1CP = (∂S/∂T )P,x = (∂S/∂T )P,x,C + (∂S/∂C)T,P,x(∂C/∂T )P,x,A (4)
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and making use of the relations(∂C/∂T )P,x,A(∂T /∂A)P,x,C(∂A/∂C)T,P,x = −1 and
(∂T /∂A)P,x,C = (∂S/∂C)−1

T ,P,x , we have

CP = CP0 + δCP ≡ T (∂S/∂T )P,x,C − T (∂S/∂C)2T ,P,x(∂C/∂A)T,P,x . (5)

HereA is the affinity defined byA = −(∂G/∂C)T,P,x . In a system in thermal equilibrium
A = 0. Indeed if a second order phase transition occurs(∂A/∂C)T,P,x approaches zero
and(∂C/∂A)T,P,x diverges as a transition point is approached (Prigogine and Defay 1954).
Therefore, in the case of a second order phase transition, for example,δCP gives rise to a
divergence of the specific heat at a transition (or lambda) point, whereas in the present case a
‘structural change’ (that does not correspond to any singularity in any derivative of the Gibbs
energy)(∂C/∂A)T,P,x remains finite although a significant enhancement is to be expected in
the transitional region.

Proceeding in the same way, the following two groups ofδφ may be obtained.

(i)

δCP = −T (∂S/∂C)2T ,P,x(∂C/∂A)T,P,x (6)

δκT = −V −1(∂V/∂C)2T ,P,x(∂C/∂A)T,P,x (7)

δD = (∂1µ/∂C)2T ,P,x(∂C/∂A)T,P,x (8)

(ii)

δαP = V −1(∂V/∂C)T,P,x(∂S/∂C)T,P,x(∂C/∂A)T,P,x (9)

δ1S = −(∂S/∂C)T,P,x(∂1µ/∂C)T,P,x(∂C/∂A)T,P,x (10)

δ1V = −(∂1µ/∂C)T,P,x(∂V/∂C)T,P,x(∂C/∂A)T,P,x . (11)

The excess quantity in the first group has a definite sign, which arises from the thermodynamic
stability condition,(∂C/∂A)T,P,x = −(∂2G/∂C2)T ,P,x < 0, as shown above.δCP and
δκT are always positive whileδD is always negative in a system in thermal equilibrium. In
contrast the excess quantity in the second group is of undetermined sign depending on the sign
of (∂V/∂C)T,P,x , (∂S/∂C)T,P,x or (∂1µ/∂C)T,P,x .

It is seen that the dependences onT , P and x of these excess thermodynamic
response functions are not all independent but related to each other through(∂C/∂A)T,P,x .
Straightforward calculations show that theδφ satisfy the following relations (Tsuchiya 1999).

(iii) Relations amongδCP , δκT andδαP .

δCP = T V δαP (∂P/∂T )x,C (12)

δκT = δαP (∂T /∂P )x,C (13)

δCP δκT = T V (δαP )2 (14)

where(∂P ∂(T )x,C is the constantC slope in theT –P plane.
(iv) Relations amongδκT , δD andδ1V .

δκT = V −1(δ1V )(∂x/∂P )T,C (15)

δD = −(δ1V )(∂P/∂x)T,C (16)

δκT δD = −V −1(δ1V )2 (17)

where(∂x/∂P )C is the constantC slope in theP–x plane.
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(v) Relations amongδCP , δD andδ1S.

δD = (δ1S)(∂T /∂x)P,C (18)

δCP = −T (δ1S)(∂x/∂T )P,C (19)

δCP δD = −T (δ1S)2 (20)

where(∂T /∂x)P,C is the constantC slope in thex–T plane.

The relations (iii) are analogous to Pippard relations for the second kind of phase
transition (Pippard 1964). The new relations (iv) and (v) connect the contribution of Darken
stability caused by structural changes to the other thermodynamic response functions. The
Darken stability function is related to the concentration–concentration fluctuationsScc(0) by
D = RT Scc(0)−1 (Darken 1967, Bhatia and Thornton 1970). Then the negative sign ofδD

implies that the structural changes in a binary mixture inevitably enhance the instability with
respect to the concentration fluctuations. The totalD orScc(0) has been evaluated for a number
of systems with various thermodynamic measurements.δD has been unable to be partitioned
from the totalD so far, however.

3. Application to the looped two-melt phase in the S–Te system

Since the test of relations analogous to Pippard relations in (iii) for the structural changes in
the liquid S–Te system has been reported elsewhere (Tsuchiya 1994), we evaluateδD through
the new relations in (iv) and (v) (equations (17) and (20), respectively) to resolve a two-melt
phase separation with a looped boundary.

We start with the analysis using the relations in (iv). Figure 2 shows the isotherms of
the molar volume (V ) every 100◦C from 400 to 800◦C (Tsuchiya 1992). At 400◦C V as
a function of composition changes almost linearly up to 80 at.% Te and then decreases to
the value in Te. With increasing temperature, the composition range where volume contracts
moves to the S rich side and the volume contraction becomes larger. The number of data
is too small to numerically calculate the difference in the partial volumes,1V = dV/dx,
because a small scatter in the data causes a large scatter in the derivative. Further we could
not find a single polynomial equation of composition fitting to the data with reasonably small
residue. Then the non-linear equation (1) of Tsuchiya and Seymour (1982) was used to obtain
a curve to fit the molar volume as a function of composition. Using the fitted curves through
the data in figure 2, the difference in the partial volume,1V = dV/dx, was calculated and
is plotted in figure 3. A pronounced negative peak appears in the composition range where
the volume contracts, which corresponds toδ1V . The base line forδ1V , (∂V/∂x)T,P,C ,
would be given by a smooth interpolation curve between the asymptotic values of1V at
pure S and Te since it is constant as observed on the S rich side at low temperatures and
on the Te rich side at high temperatures where there are no structural changes (C = 0 or
1). In the present analysis,(∂V/∂x)T,P,C obtained by the aforesaid non-linear fitting was
used to a first approximation. It is represented by broken curves in figure 3. The error
introduced in this approximation would be at most 5% ofδ1V and does not change the final
conclusion.

In figure 4, the isotherms of the isothermal compressibility,κT , are plotted (Tsuchiya
1994). A few points at high temperatures at the S rich composition have been estimated by
extrapolating the sound velocity, molar volume and specific heat as a function of temperature.
The line connecting the data has been drawn by making use of a commercially available spline
fitting program. At low temperaturesκT has a pronounced peak around the same composition
whereδ1V has a negative peak. This peak indicates that the excess compressibility,δκT , is
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Figure 2. Isotherms of the molar volume of the S–Te system (Tsuchiya 1992). The lines through
the data have been determined by non-linear fitting with equation (1) in Tsuchiya and Seymour
(1982).

positive in agreement with the thermodynamic relations presented above. The baseline for
the evaluation ofδκT has been drawn by using a model with binary hard spheres (Shimoji
1977). The hard spheres for S and Te have been chosen so as to reproduce the data on the
S side at low temperatures and those on the Te side at high temperatures because effects due
to structural changes under consideration are supposed to be small.δ1V andδκT evaluated
at 500 and 700◦C have been plotted in figure 5. At 700◦C, the phase separation actually
occurs in the small composition interval around 60 at.% Te.δ1V and δκT around the
extremum are interpolations, therefore. A small shift between the positions of the extrema
of δ1V and δκT at each temperature can be observed. We suppose that it results from
the uncertainty in drawing the baselines. Putting those data into equation (17),δD can be
calculated. The results at 500◦C are compared in figure 7 with the results from relation (20)
and all results are plotted in figure 8 to explain the origin of the two-melt phase with looped
boundary.

Evaluation ofδD through equation (20) was possible only at 500◦C because the data for
CP on the S side were available only at low temperatures and their extrapolation to higher
temperatures causes large error in determining the mixing entropy. It should be mentioned
that the extrapolation ofCP does not introduce serious error in evaluatingκT becauseCP
contributes to the dilatation term in the isothermal compressibility which is only about 10% or
less of the total compressibility. Figure 6 shows the isotherm of the constant pressure specific
heat (Kakinuma and Ohno 1987), mixing entropy and difference in the partial mixing entropy,
1Smix = dSmix/dx, at 500◦C. The mixing entropySmix has been evaluated using the data
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Figure 3. Difference in the partial volumes,1V = dV/dx, for S and Te in the S–Te system.
Broken lines are baselines for evaluation ofδ1V , see the text.

at 468◦C (Maekawaet al 1973) andCP as a function of temperature (Kakinuma and Ohno
1987, Tsuchiya 1991a) using the thermodynamic relations. The peak inCP is caused by
δCP . A simple average ofCP for the S rich alloys has been chosen asCP0 or the specific
heat expected for alloys with no structural change to a first approximation, because structural
changes under consideration do not occur on the S side at this temperature.1Smix has a peak
around the composition whereCP shows a peak. As shown in a previous paper (Tsuchiya
1986b), the mixing entropy of the S–Te alloy is the sum of an ideal mixing entropy term and
of a term including the effect of structural change in the Te rich alloys. By definition of the
mixing entropy it also involves the term originating from the contribution from the structural
transition in pure Te (change in the reference state), and it is proportional to the Te composition.
The latter term give rise to a constant term in1Smix = dSmix/dx. Assuming an ideal mixture
of S and Te, therefore, the base line forδ1S is given by− ln[x/(1− x)] + const, where const
represents the aforesaid contribution due to the change in the reference state in Te. It can be
determined by fitting the curve to the experimental data along the S side. The calculated value
of const was about−0.51(R). This is not in contradiction with the value expected from the
entropy difference in the structural change in liquid Te (Tsuchiya 1991a). Figure 7 compares
δD values at 500◦C calculated using equations (17) and (20).

A maximum or minimum in the thermodynamic response functions (CP , κT andαP ) as
a function of temperature occurs around the temperature where the structural transition to the
high temperature form has proceeded about half way and the order parameter,C, is about12.
The positions of extrema,T ∗, increase with S composition as shown by a hatched curve in
figure 1, whose derivative with respect to the composition may be related toδD. Eliminating
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Figure 4. Isotherms of the isothermal compressibility,κT , in the S–Te system. Broken lines are
baselines for evaluation ofδκT , explained in the text.

Figure 5. δ1V (solid curves) andδκT (broken curves), the contributions of structural changes
to the difference in the partial volumes and isothermal compressibility, respectively, at 500 and
700◦C.
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Figure 6. Constant pressure specific heat,CP (Kakinuma and Ohno 1987), mixing entropy,Smix ,
and difference in the partial mixing entropy,1Smix , for the liquid S–Te system at 500◦C, where
R is the universal gas constant.δCP andδ1S represent the contribution brought about by the
structural change.

δ1S from equations (18) and (19), we obtain

δD = −T −1δCP (∂T /∂x)
2
P,C. (21)

Since the slope ofT ∗, dT ∗/dx, is approximately equal to the value of(∂T /∂x)P,C atP ∼ 0
andC ∼ 1

2, we can estimateδD along the hatched curve using theδCP value at its maximum.
It is noted thatδ1S is not needed in this analysis. Figure 9(a) shows the peak values ofCP
for the respective S–Te alloys as a function of composition (Kakinuma and Ohno 1987) where
CP0 is the same quantity as in figure 6. The results are shown in figure 9(b) in which allT ∗

data were fitted to a quadratic function of composition.
Keeping in view the experimental uncertainties as well as the uncertainty in the

assignments of the baselines, the values obtained for theδD through relations (17), (20) and
(21) are in reasonable agreement as compared in figures 7 and 9. The sign ofδD is negative
as predicted by the new relations and takes a pronounced minimum in the transitional region.
The phase separation tendency, therefore, develops in the liquid S–Te system in anx–T region
where the thermodynamic response functions (CP , κT and/orαP ) show an extremum. These
observations can be made even considering the error bars inδD.
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Figure 7. Excess Darken stabilityδD brought about by the structural changes in the S–Te system
at 500◦C. Solid circles and open circles have been estimated, respectively, from equations (17) and
(20).

Figure 8. Comparison of (2ξ − δD) and the entropy term,RT/x(1− x), whereξ is 9 kJ mol−1

(Tsuchiya 1986b). Thex–T points, whereRT/x(1−x)− (2ξ − δD) < 0, evaluated every 100◦C
and 5 at.% are plotted in figure 1, at which a homogeneous S–Te mixture becomes unstable.

4. Discussion

The concentration–concentration fluctuationScc(0) at the zero limit wavelength for the present
Gibbs free energy is given by (cf equation (9)),

Scc(0)
−1 = (RT )−1(D0 + δD) = (RT )−1{(∂2G/∂x2)T ,P,C

+(∂1µ/∂C)2T ,P,x(∂C/∂A)T,P,x}.
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Figure 9. (a) Specific heat,CP , of S–Te alloys at the peak as a function of composition (Kakinuma
and Ohno 1987). The curve through the data is a quadratic fitting.δCP is given by the difference,
CP − CP0. (b) Comparison of (2ξ − δD) and the entropy term,RT/x(1− x), along theT ∗–x
curve in figure 1. Error bars correspond to the uncertainty in dT ∗/dx andδCP . Solid triangles are
the peak values of (2ξ − δD) from equation (17) plotted in figure 8. The broken curve is (2ξ − δD)
for ξ = 5.5 kJ mol−1. Two arrows on the entropy curve indicate the observed boundary of the
two-melt phase along theT ∗–x curve.

The first term on the right hand side represents expected Darken stability if there were no
structural change. It was examined previously (Tsuchiya 1986b) using the thermodynamic
quantities of mixing from Maekawaet al (1973). To a first approximation, it takes the form

D0 = RT/x(1− x)− 2ξ (22)

where a regular solution of S and Te has been assumed.ξ is the interchange parameter and
was evaluated to be 9 kJ mol−1 at 468◦C (Tsuchiya 1986b).RT/x(1− x) and (2ξ − δD)
calculated at 500, 600, 700 and 800◦C through equation (17) have been plotted as a function
of composition in figure 8. As the fraction of S increases, the composition around which the
structural change occurs (characterized by a peak in−δD) shifts to the mid-range composition.
Consequently, the difference betweenD0 and−δD becomes smaller as the temperature rises
because the shift of the peak in−δD to the mid-range of composition is more effective in
reducing the totalD while the entropy term,RT/x(1 − x), increases the stability. As a
consequence anx–T range appears at high temperatures in whichD0 + δD becomes negative,
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which is shown in figure 8. In this range the S–Te mixture becomes unstable with respect to
the concentration fluctuations. Figure 9(b) shows same quantities along theT ∗–x curve in
figure 1 calculated from the relation (21) together with the peak values of (2ξ − δD) from
equation (17). Starting from Te side,−δD, hence (2ξ − δD) gradually increases while the
entropy term decreases rapidly to take a broad minimum around 64 at.% Te. Below 78 at.% of
Te, the totalD becomes negative and appears to become positive again beyond about 40 at.%.
The phase separation is predicted between these compositions.

Figure 1 compares thex–T region where the new thermodynamic relation (17) predicts
the instability and the two-melt region found by aγ -ray attenuation method. In view of
the uncertainty in the present numerical analysis overlap of both regions is qualitatively
satisfactory. Quantitatively, however, the present analysis obviously overestimates the
instability. Furthermore the centre of the unstable region appears to be shifted to the Te
side as compared with the observed two-melt region. Since the excess quantities evaluated
from different thermodynamic response functions result in almost the same magnitude of the
δD, the discrepancy could be ascribed to the different values ofξ . The previous value of
ξ = 9 kJ mol−1 has been determined to fit the heat of mixing in the low temperature form
of S–Te alloy in which the coordination numberz is about 2. As shown in the following
paragraph, on the other hand, the coordination number increases to more thanz = 2 in the
transition region, which suggests a different value ofξ in this region. If the value ofξ is
arbitrarily reduced to 5.5 kJ mol−1, the unstablex–T region can reproduce quantitatively the
looped two-melt phase as shown in figure 9. This would imply that the interchange parameter
is dependent onz and becomes smaller with increasingz. Correspondingly it would also
decrease as the composition goes through a peak in−δD from the S to Te side at a fixed
temperature in a way similar to how the coordination number increases (figure 10). The effect
of this is to shift the centre of the unstable region estimated from equation (17) to the Se side,
the right direction to obtain better agreement. We therefore conclude that the peculiar two-melt
phase separation with a looped boundary is caused by the local structural change.

To clarify the structural change in the liquid S–Te system at an atomic scale two
independent neutron diffraction experiments, one at Tsukuba (Kakinumaet al 1999) and the
other at Saclay (Couletet al 1999) have been performed. The total coordination number as a
function of composition at three temperatures obtained at Saclay is reproduced in figure 10.
The coordination number has been evaluated with a model assuming that the first peak in the
radial distribution function,g(r), consists of three or four Gaussian functions, the parameters
of which were fitted to the highq part ofS(q). On the Te side, the total coordination number
is larger than 2. By adding S, it decreases to about 2. The rate of decrease is particularly
large in the composition range where thermodynamic response function takes an extremum.
With increasing temperature the decrease becomes more prominent and occurs in the more S
rich side in agreement with the thermodynamic observations. Meanwhile the high resolution
experiments at Tsukuba could resolve the three atom pairs and their inter-atomic distances have
been determined as a function of composition (Kakinumaet al 1999). The results indicate
that the partial coordination number between S–Te in the two-melt region drastically decreases
from the one expected from a random mixture.

In Figure 10, the composition dependence of the total coordination number is also
compared with the previous calculations of the fraction of S–Te in a high temperature form using
an inhomogeneous structure model (Tsuchiya 1992). Although a systematic shift between
calculated and experimental values is observed, the calculations can reproduce the general
experimental trend. The concentration and temperature evolution of the coordination numbers
determined by neutron scattering is certainly meaningful, but their absolute value might be
subject to a systematic error. Anyway, the neutron diffraction experiments provide the evidence
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Figure 10. Comparison of the total coordination number,z (Couletet al 1999) with the fraction
of an S–Te alloy in a high temperature form (Tsuchiya 1992). The latter is normalized to 3 and 2,
in a high temperature and a low temperature form, respectively.

that changes in local order similar to those observed in Te and also in Se–Te alloys take place
in the S–Te system in thex–T region suggested by thermodynamic investigations.

As mentioned in the introduction the overall behaviour of physico-chemical properties is
much the same for both S–Te and Se–Te systems. So, why does this unique two-melt phase
appear only in the S–Te system? The calculations presented here show that this phase separation
results from the delicate balance between two terms: a regular solution term that stands for
the thermodynamic properties of the melt without structural change, and a term resulting from
the structural change in the melt. The magnitude of each contribution has to be considered.
The interchange parameter favours phase separation and is larger (9 or∼5.5 kJ mol−1) in the
S–Te system, whereas it weakly favours order (−1.9 kJ mol−1) in the Se–Te alloy (Tsuchiya
1986b). These values agree with the phase equilibria in the solid state: Se–Te alloys form a
continuous solid solution at any composition while S and Te atoms do not mix up (Hansen
and Anderko 1958). In the case of S–Te alloys the repulsive interaction between the S and Te
pair works cooperatively with the structural change to favour an instability with respect to the
concentration fluctuations.
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5. Conclusions

The new thermodynamic relations have been applied to evaluate the contribution from structural
changes to the stability function in the S–Te system. The excess contribution to the Darken
stability caused by the structural change has been partitioned and is negative as predicted.
It has been shown that with changing temperature and composition the excess contribution
becomes large enough to cause the instability of liquid S–Te alloy in a smallx–T region.
These thermodynamic arguments indicate that thermally driven local order changes can induce
divergent concentration fluctuations and is the origin of the unique closed loop miscibility gap
localized in a very narrow region in the liquid S–Te system.
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